Reverse k Nearest Neighbors Query Processing: Experiments and Analysis
نویسندگان
چکیده
Given a set of users, a set of facilities and a query facility q, a reverse k nearest neighbors (RkNN) query returns every user u for which the query is one of its k closest facilities. RkNN queries have been extensively studied under a variety of settings and many sophisticated algorithms have been proposed to answer these queries. However, the existing experimental studies suffer from a few limitations. For example, some studies estimate the I/O cost by charging a fixed penalty per I/O and we show that this may be misleading. Also, the existing studies either use an extremely small buffer or no buffer at all which puts some algorithms at serious disadvantage. We show that the performance of these algorithms is significantly improved even when a small buffer (containing 100 pages) is used. Finally, in each of the existing studies, the proposed algorithm is mainly compared only with its predecessor assuming that it was the best algorithm at the time which is not necessarily true as shown in our experimental study. Motivated by these limitations, we present a comprehensive experimental study that addresses these limitations and compares some of the most notable algorithms under a wide variety of settings. Furthermore, we also present a carefully developed filtering strategy that significantly improves TPL which is one of the most popular RkNN algorithms. Specifically, the optimized version is up to 20 times faster than the original version and reduces its I/O cost up to two times.
منابع مشابه
DART: An Efficient Method for Direction-Aware Bichromatic Reverse k Nearest Neighbor Queries
This paper presents a novel type of queries in spatial databases, called the direction-aware bichromatic reverse k nearest neighbor(DBRkNN ) queries, which extend the bichromatic reverse nearest neighbor queries. Given two disjoint sets, P and S, of spatial objects, and a query object q in S, the DBRkNN query returns a subset P ′ of P such that k nearest neighbors of each object in P ′ include ...
متن کاملA Mutual Pruning Approach for RkNN Join Processing
A reverse k-nearest neighbour (RkNN) query determines the objects from a database that have the query as one of their k-nearest neighbors. Processing such a query has received plenty of attention in research. However, the effect of running multiple RkNN queries at once (join) or within a short time interval (bulk/group query) has, to the best of our knowledge, not been addressed so far. In this...
متن کاملInfluence Zone and Its Applications in Reverse k Nearest Neighbors Processing
Given a set of objects and a query q, a point p is called the reverse k nearest neighbor (RkNN) of q if q is one of the k closest objects of p. In this paper, we introduce the concept of influence zone which is the area such that every point inside this area is the RkNN of q and every point outside this area is not the RkNN. The influence zone has several applications in location based services...
متن کاملNon-zero probability of nearest neighbor searching
Nearest Neighbor (NN) searching is a challenging problem in data management and has been widely studied in data mining, pattern recognition and computational geometry. The goal of NN searching is efficiently reporting the nearest data to a given object as a query. In most of the studies both the data and query are assumed to be precise, however, due to the real applications of NN searching, suc...
متن کاملA safe exit approach for continuous monitoring of reverse k-nearest neighbors in road networks
Reverse K-Nearest Neighbor (RKNN) queries in road networks have been studied extensively in recent years. However, at present, there is still a lack of algorithms for moving queries in a road network. In this paper, we study how to efficiently process moving queries. Existing algorithms do not efficiently handle query movement. For instance, whenever a query changes its location, the result of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PVLDB
دوره 8 شماره
صفحات -
تاریخ انتشار 2015